公司产品系列
Product range咨询热线:
0519-13961410015Articles
简要描述:电镀废水处理设备安全实惠坚固耐用乙二醇是化工生产中常用的有机原料,主要运用在聚酯塑料的生产中。煤制乙二醇工艺路线主要是将煤制合成气经过酯化、羰基化反应,从而生产出草酸酯,接着将草酸酯与氢气进行反应,生产出乙二醇。由于我国对乙二醇需求量较大,结合我国煤炭资源丰富的现状,煤制乙二醇技术应运而生并且达到了快速发展。
电镀废水处理设备安全实惠坚固耐用
另煤制乙二醇羰基化和加氢两个主反应均会发生副反应生成甲酸甲酯、甲缩醛、碳酸二甲酯、二乙二醇、二甲醚等,甲酸甲酯、甲缩醛、碳酸二甲酯等酸性物质在碱性环境下也会发生反应生成甲酸钠、
催化剂的形状和强度:直径Φ2~3mm,长2~6mm的挤压长条,强度>60N。堆密度0.5~0.6kg/L,液相空速为0.3~1.5h-1。使用寿命>2年,硝酸转化率92%~95%。工艺条件:操作压力0.35MPa,操作温度80~110℃。工艺物料设计流向气相、液相均为上进下出,催化剂床层装填高度每段3m,共3段,催化剂装填量25m3。处
入硝酸还原塔反应的气流量为8000~10000Nm3/h,NO含量10%~14%。入硝酸还原塔液相流量10m3/h,硝酸含量5%~7%,反应器操作压力0.25MPa,温度60~80℃,液位5
制药废水、印染废水、石油化工废水等工业废水具有生物毒性大,可生化性低,传统的生物处理方法难以实现污染物的降解。为了保护水环境,国家出台了更加严格的污染物排放标准,新标准的实施将有效减少污染物排放,但也给企业带来了新的压力。技术成熟的大型企业,主体工艺的大幅度改变难度较大,因此,急需开发应用新型污水处理技术,以实现工业废水的达标排放。
臭氧是一种强氧化剂,氧化性仅次于氟和•OH,臭氧氧化具有反应速度快、无二次污染、占用空间小、无额外运输费用及管理安全问题等优点,臭氧在催化剂的作用下能够形成•OH,加快反应速率,对有机物的分解更加结合臭氧催化氧化技术原理,讨论了臭氧催化氧化技术在不同类型污水处理领域的应用与特点。
1、臭氧催化氧化技术原理
臭氧催化氧化技术分为均相臭氧催化氧化技术与非均相臭氧催化氧化技术。均相臭氧催化氧化技术通过引入紫外光或加入溶液状态的催化剂形成催化氧化体系。均相臭氧催化氧化的一种反应机理是臭氧在催化剂的作用下分解生成自由基,这是一种类Fenton反应机理;另一种是过渡金属离子与有机物之间发生复杂的配位反应,形成金属络合物,发生氧化还原反应的能力增强,更容易被臭氧降解,达到催化的作用。非均相催化臭氧化技术中的催化剂以固态形态存在,易与水分离,能够避免催化剂的流失,减少后续处理成本。常见的催化剂类型有活性炭催化剂、金属氧化物催化剂、负载型催化剂。非均相催化氧化的催化剂反应机理一般是自由基反应机理、表面配位络合机理及协同作用机理。
2、臭氧催化氧化技术在制药废水处理中的应用
制药废水成分复杂,具有有机污染物种类多、毒性大、COD及NH3-N浓度高、色度高、可生化性差等特点。非均相臭氧催化氧化技术工艺简单,二次污染小,能够降低污水色度、毒性,对于处理制药废水具有较好的处理效果。
谷俊通过臭氧催化氧化的小试与中试,探究了在一级好氧出水或总出水增加臭氧催化氧化装置对制药废水的处理效果,发现催化氧化装置无论是置于一级好氧池出水还是在总出水位置,都具有稳定的去除能力,能够保证废水达标排放,但在一级好氧池出水增加,臭氧催化氧化装置可以在较低臭氧浓度下将大分子难降解有机物降解为中间产物,提高可生化性,再通过二级好氧处理去除中间产物,相对于在总出水位置增加臭氧催化氧化装置,这种工艺臭氧使用量少,产泥量低,能够显著降低投资、运行成本。
杨文玲等、孔明昊分别研究了催化剂类型、臭氧投加量、pH值、停留时间、气液接触方式等工艺条件对去除效果的影响。杨文玲等在连续实验条件下,以陶粒为载体,采用浸渍法制备的NiOx-FeOx/陶粒催化剂对制药废水处理具有良好的活性,发现在停留时间90min,臭氧气体通量1L/min,臭氧浓度为96.61mg/L,催化剂投量为100g催化剂/L废水能够实现最佳运行条件。孔明昊选用γ-Al2O3,以2,4-二酚(DMP)为特征污染物,发现该催化反应符合自由基反应机理,催化剂在pH值为9.0左右时取得最佳的去除效率。
3、臭氧催化氧化技术在印染废水处理中的应用
印染废水是工业废水排放大户,由于印染过程复杂,加入较多的染料与助剂,同时新型染料层出不穷,因此印染废水具有水量大、有机污染物浓度高、可生化性差和色度高等特点。臭氧催化技术在印染废水的处理中能够在低投资、低运行费用、不增加占地的情况下,使出水达到排放要求。
黎兆忠等、陈董根等分别使用具有锰催化活性组分的陶粒和H2O2作为催化剂开展臭氧催化氧化深度处理印染废水试验,发现两种催化剂均能显著降低废水色度,保证达标排放,提升了臭氧催化的效果,降低臭氧投加量,节省了运行费用。
汪星志等[8]将臭氧催化氧化技术应用于纺织厂印染废水的处理中,取代原氯气氧化工艺,对二沉池出水进行深度处理,催化剂使用负载锰氧化物陶粒,在处理量60000m3/d,二沉池出水COD≤250mg/L,色度≤100倍的运行条件下,臭氧投加量在40~45mg/L,废水色度和COD进一步降低,系统的运行费用为0.712元/m3,同时解决了出水中含有余氯等二次污染物的问题。朱亚雄使用在活性炭颗粒上进行镁锰联合负载得到的催化剂,以流化床的形式深度处理印染废水经生化处理后的二沉池出水,在混合气体流量0.8L/min,臭氧浓度35mg/L,废水pH值为2,催化剂用量2g/L,水力停留时间35min时,系统达到经济效能与去除优。
4、臭氧催化氧化技术在石油废水处理中的应用
石油废水主要来源于石油的开采与储运过程,以及常减压蒸馏、重整、催化裂化等石油二次加工过程,有毒有害,水量大,水质复杂波动大,含多环芳烃化合物、芳胺类化合物、杂环化合物等难生物降解有机物。由于石油废水的高毒性,对生物具有抑制作用,仅采取生物处理难以满足排放标准,因而,多使用臭氧催化氧化技术与生物技术联用的处理工艺,具有针对性强、反应迅速、无二次污染等特点,对难降解物质有较好的降解效果。
陆彩霞等将臭氧催化氧化技术与特定菌高效生化技术相结合对石化废水进行深度处理,臭氧催化氧化对能够降低色度,对COD有较好的去除效果,同时提高废水的可生化性,有利于后续的生物脱氮。王宇航在石化废水二级处理的基础上,采用臭氧催化氧化-曝气生物滤池的联合工艺进行深度处理,研究表明,在进水COD不大于250mg,NH3-N不大于59.9mg/L时,调节COD/O3为2,pH值7~8,该系统能够稳定高效地去除COD,NH3-N,出水能够达标排放。相似地,余海晨等、李京京等也将臭氧催化氧化技术生物处理结合应用于石油废水的处理中。
0%。
4.4 无催化硝酸还原配套硝酸浓缩技术
4.4.1 处理方案及原理
电镀废水处理设备安全实惠坚固耐用硝酸浓缩技术为物理过程,主要原理为蒸馏,在负压[30kPa(A)]条件下,将酯化系统的含酸废液进行蒸馏,将硝酸进行浓缩,浓缩之后的硝酸返至硝酸还原进行回收利用,硝酸浓缩塔顶采出水和甲醇,送至甲醇回收塔进行分离,可实现废水盐分的和COD的有效降低。
4.4.2 操作参数
主要操作参数:压力为30kPa(A),塔釜温度为70℃。
4.5 反渗透膜分离+蒸发结晶技术
碟管式反渗透(DTRO)技术是一种高效反渗透技术,相对于卷式反渗透,DTRO技术耐高压、抗污染特点更加明显,即使在高浊度、高SDI值、高盐分、高COD的情况下,也能经济有效稳定运行,更加适应高盐废水的处理。碟管式反渗透DTRO膜浓缩后的浓盐水TDS含量为100000~150000mg/L,回收70%~80%蒸馏水,并采用结晶技术将盐分结晶成固体进行回收利用,多效蒸发工艺和蒸汽机械再压缩工艺,产生的二次蒸汽,压缩后使压力和温度升高,热焓增加,然后送入蒸发器的加热室作加热蒸汽使用,充分利用能量。其产水经过次优分级,分别回用于脱盐水处理和循环水处理系统。DTRO盐截留率为98%~99.8%,结晶的干化固体资源化回收利用,最终达到液体要求。
4.6 反硝化+IC+AO(HBF)生化处理技术
对高浓盐废水设置调节池,保证一定的停留时间,均质水质水量,设置在线电导率监测,电导率高时则开启稀释水泵对高浓原水进行稀释进水。达到进入主体处理单元水质要求后,废水进入反硝化池,通过反硝化反应去除大部分的硝态氮,在反硝化配水池中设置在线pH值监测系统,在反硝化产生碱度和原水的酸度中和后合理调控进入到后续反应系统的pH值。反硝化反应器出水进入IC厌氧反应器,去除大部分的COD。IC出水进入改进型A/O工艺(HBF),进一步去除COD、NH3—N、TN等污染物质,HBF生化工艺出水可达标排放。
5、废水处理技术的对比
将以上废水处理技术总结对比如下。
①催化硝酸还原技术。
处理指标:废水出口硝酸降至0.15%~0.2%,COD约为8000mg/L。
优点:固定投资小,可实现酯化副产物硝酸的回收利用,在一定程度上降低废水的盐含量,降低废水的处理难度。
缺点:操作温度较高,具有一定的风险性,受反应平衡的影响,废水出口仍含有一定的硝酸,0.15%~0.2%,需碱中和处理,废水中仍含有一定的盐分,处理仍较为困难,催化剂具有一定的使用寿命,需更换。
②无催化硝酸还原反应釜。
处理指标:废水出口硝酸仍处于1%的较高水平,COD约为8000mg/L。
优点:可实现酯化副产物硝酸的回收利用,降低废水的盐含量,降低废水的处理难度,反应较为温和,操作较为简便,无需催化剂。
缺点:受反应平衡的影响,出口硝酸含量仍处于较高的水平,约1%,需碱中和处理,即废水中盐分含量仍较高,单台设备转化率有限,需多台设备罗列,一次性投资较大,反应釜设置搅拌器和夹套热水伴热,由于反应釜为多台罗列,设备运行费用较高。
③无催化硝酸还原反应塔。
处理指标:废水出口硝酸可降至0.1%的较好水平,COD约为8000mg/L。
优点:可实现酯化副产物硝酸的回收利用,降低废水的盐含量,降低废水的处理难度,反应较为温和,操作较为简便,无需催化剂,由于采用专有塔内件,液体在还原塔内的停留时间大幅度增加,出口硝酸含量可降至0.1%,废水中的盐分大幅度下降。
缺点:由于该项技术为技术,转让费较高,一次性投资较大,该技术虽可大幅度降低废水中的盐含量,但仍受反应平衡的影响,无法达到为零的目的,仍需继续处理,另外对于废水中COD降低的效果不明显。
④无催化硝酸还原配套硝酸浓缩技术。
处理指标:废水出口几乎不含硝酸,COD约为4000mg/L。
优点:可实现酯化副产物硝酸的回收利用,废水盐含量的降低废水的处理难度,反应较为温和,操作较为简便,无需催化剂。
缺点:一次性投资较大,由于需要将甲醇、水全部蒸发从塔顶采出,蒸汽、循环水、冷冻水消耗量较大,运行费用太高。
⑤反渗透膜分离+蒸发结晶技术。
处理指标:废水出口几乎不含硝酸,COD超过10000mg/L。
优点:技术较为成熟,无需技术提供商,技术转让费用低。
缺点:处理过程产生的杂盐属危化品,难以处理。且在运行过程易造成COD的累积以及反渗透膜极易堵塞,造成系统运行较为困难,且一次性投入较大。
⑥反硝化+IC+AO(HBF)生化处理技术。
处理指标:盐含量降至800mg/L,COD降至500mg/L。
优点:装置一次性投资较低。
缺点:该技术将酯化反应副产的硝酸通过反硝化转化为氮气,无法实现硝
理物料中的硝酸浓度为0.2%~15%,气相NO与液相中硝酸的物质的量比为4∶1或略大一点。
4.1.3 操作参数
温度,80~85℃,压力,0.38MPa,气流方式,气液相并流,上进下出,硝酸转化率92%~95%。
4.2 无催化硝酸还原反应釜
4.2.1 处理方案及原理
增加废水在反应器的停留时间,硝酸、甲醇、NO反应生成亚硝酸甲酯,达到回收硝酸的目的,反应原理:
草酸钠、碳酸钠等钠盐,造成废水中盐分的复杂性。而二乙二醇、二甲醚在甲醇回收塔属于重组分,残留在废水中,造成废水的COD在8000~10000mg/L,居高不下。综上所述,煤制乙二醇废水具有高盐分、盐分复杂、高COD的特性。
4、煤制乙二醇废水处理技术
4.1 催化硝酸还原技术
4.1.1 处理方案及原理
在催化剂的作用下,硝酸、甲醇、NO反应生成亚硝酸甲酯,达到回收硝酸的目的,反应原理: