产品中心/ PRODUCTS

我的位置:首页  >  产品中心  >  一体化污水处理设备  >  一体化废水处理设备  >  镇江电化学污水处理一体化废水净化设施

镇江电化学污水处理一体化废水净化设施

  • 产品型号:
  • 更新时间:2024-03-26

简要描述:镇江电化学污水处理一体化废水净化设施铁或者铝等可溶性的金属为极板极,在直流电的作用下,阳极发生溶蚀,产生Al、Fe等金属离子,在经一系列水解、聚合及亚铁的氧化过程,发展成为各种羟基络合物、多核羟基络合物以至氢氧化物,使废水中的悬浮杂质、胶态杂质凝聚沉淀而分离.同时,带电的污染物颗粒在电场中泳动,其部分电荷被电极中和而促使其脱稳聚沉。

产品详情

镇江电化学污水处理一体化废水净化设施

重金属废水浓度稀,成分复杂,处理达标要求又非常严格,传统的废水处理技术具有难以克服的缺点,主要表现为:处理剂使用量大、价格昂贵、反应不易控制、反应较慢、效果不理想、水质差、残渣不稳定、回收贵金属难等缺点。

电化学法处理重金属废水优点:

①需添加任何氧化剂、絮凝剂等化学药品;

②既可单独处理又可与其他技术相结合,提高废水的可生化性;

③不会或很少产生二次污染;

④设备体积小,占地少,操作简便灵活。因此该法被称为清洁处理法。

电化学法处理重金属废水,系统运行成本明显降低,去除污染物的效果和企业经济效益显著,为实现重金属废水治理提供了一条有效途径。

利用电解铁板或铝板等生成Fe2˙Fe3+或Al3+,再形成Fe(OH)2、Fe(OH)3、Al(OH)3等沉淀物,通过絮凝、沉降去除水中污染物。电凝聚法的最新研究方向是周期换向的脉冲信号电凝聚,既具备高压脉冲电凝聚法的优点,又由于两极均可溶,更有利于金属离子与胶体间的絮凝作用,防止电极钝化。

电絮凝工艺可以处理电镀等含有重金属离子的废水,可以有效地去除废水中的 Cr、Zn、Ni、Cu、Cd等重金属离子。

Cr<0.001,去除率最大可达100%; Ni<0.005去除率最大,可达100%;Zn<0.062去除率可达57%。

电絮凝工艺原理介绍

是以铁或者铝等可溶性的金属为极板极,在直流电的作用下,阳极发生溶蚀,产生Al、Fe等金属离子,在经一系列水解、聚合及亚铁的氧化过程,发展成为各种羟基络合物、多核羟基络合物以至氢氧化物,使废水中的悬浮杂质、胶态杂质凝聚沉淀而分离.同时,带电的污染物颗粒在电场中泳动,其部分电荷被电极中和而促使其脱稳聚沉。

循环冷却水是工业用水中的用水大项,在石油化工、电力、钢铁、冶金等行业,循环冷却水的用量占企业用水总量的50-90%。由于原水中有不同的含盐量,循环冷却水浓缩到一定倍数必须排出一定的浓水,并补充新水。一台30万KW冷凝机组,循环冷却水量要达到3.3万吨/时左右,假定原水中含盐量为1000mg/L,浓缩倍数为3,那么循环冷却水的浓水排放约在6—8‰左右,即198—264m3/h,同时需补充的新水等于排水及蒸发损失等,补充水量大约为循环水量的2—2.6%,将为660—860m3/h左右,水资源消耗与污水排放的数量是很大的。

循环冷却水由于受浓缩倍数的制约,在运行中必须要排出一定量的浓水和补充一定量的新水。使冷却水中的含盐量、PH值、有机物浓度、悬浮物含量控制在一个合理的允许范围。如何安全的提高浓缩倍数减少水资源的消耗和运行成本,在水资源税开征和排污收费的大趋势下将极大的节约企业的生产成本。

如何在保证不结垢、不腐蚀的条件下提高循环水的浓缩倍数已成为行业研究的课题。传统的通过加药剂阻垢、缓蚀在浓缩倍数达到一定程度的时候,必须对循环水进行置换,以保证系统的稳定运行。排出系统的废水含盐量高、因为添加药剂的原因,污水的成分比较复杂又难以处理,对后续的污水处理实现达标排放带来了诸多挑战。

循环冷却水是工业用水中的用水大项,在石油化工、电力、钢铁、冶金等行业,循环冷却水的用量占企业用水总量的50-90%。由于原水中有不同的含盐量,循环冷却水浓缩到一定倍数必须排出一定的浓水,并补充新水。一台30万KW冷凝机组,循环冷却水量要达到3.3万吨/时左右,假定原水中含盐量为1000mg/L,浓缩倍数为3,那么循环冷却水的浓水排放约在6—8‰左右,即198—264m3/h,同时需补充的新水等于排水及蒸发损失等,补充水量大约为循环水量的2—2.6%,将为660—860m3/h左右,水资源消耗与污水排放的数量是很大的。

循环冷却水由于受浓缩倍数的制约,在运行中必须要排出一定量的浓水和补充一定量的新水。使冷却水中的含盐量、PH值、有机物浓度、悬浮物含量控制在一个合理的允许范围。如何安全的提高浓缩倍数减少水资源的消耗和运行成本,在水资源税开征和排污收费的大趋势下将极大的节约企业的生产成本。

如何在保证不结垢、不腐蚀的条件下提高循环水的浓缩倍数已成为行业研究的课题。传统的通过加药剂阻垢、缓蚀在浓缩倍数达到一定程度的时候,必须对循环水进行置换,以保证系统的稳定运行。排出系统的废水含盐量高、因为添加药剂的原因,污水的成分比较复杂又难以处理,对后续的污水处理实现达标排放带来了诸多挑战。

二、循环水浓缩倍率与节水的关系

提高循环水的浓缩倍数(目前我国的循环冷却水浓缩倍数一般为1.5—3.0),可降低补充水的用量,节约水资源,同时可降低排污水量,从而减少其对环境的污染,降低生产成本。

假设某企业循环冷却水系统,循环水量为10000m3/h,冷却塔进出口水温分别为42℃和32℃,风吹损失占循环水量的0.1%

全程硝化反硝化是目前应用时间最久的一种生物法,甘度针对企业污水处理中脱氮问题,研发和生产高效微生物污水处理菌种,在微生物的作用下,经过硝化、反硝化等一系列反应将废水中的氨氮转化为氮气,从而达到废水治理的目的。全程硝化反硝化法去除氨氮需要经过两个阶段:

硝化反应:硝化反应由好氧自养型微生物完成,在有氧状态下,利用无机氮为氮源将NH4+化成NO2-,然后再氧化成NO3-的过程。硝化过程可以分成两个阶段。第一阶段是由亚硝化菌将氨氮转化为亚硝酸盐(NO2-),第二阶段由硝化菌将亚硝酸盐转化为硝酸盐(NO3-)。

甘度硝化菌种应用于各种二级处理工艺中好氧处理阶段,适用生活污水、食品加工厂、屠宰废水、养殖场废水、焦化废水、制革废水、印染废水、垃圾渗滤液等高氨氮废水处理。

硝化菌为异养型微生物,多属于兼性细菌,在缺氧状态时,利用硝酸盐中的氧作为电子受体,以有机物(污水中的BOD成分)作为电子供体,提供能量并被氧化稳定。

全程硝化反硝化工程应用中主要有AO、A2O、氧化沟等,是生物脱氮中应用较为成熟的方法。

镇江电化学污水处理一体化废水净化设施


2. 化学沉淀法

化学沉淀法又称为MAP沉淀法,是通过向含有氨氮的废水中投加镁化物和磷酸或磷酸氢盐,使废水中的NH4﹢与Mg2﹢、PO43﹣在水溶液中反应生成磷酸铵镁沉淀,分子式为MgNH4P04.6H20,从而达到去除氨氮的目的。反应方程式:Mg2﹢+NH4﹢+PO43﹣=MgNH4P04

3. 吹脱法

吹脱法去除氨氮是通过调整pH值至碱性,使废水中的氨离子向氨转化,使其主要以游离氨形态存在,再通过载气将游离氨从废水中带出,从而达到去除氨氮的目的。影响吹脱效率的因素主要有pH值、温度、气液比、气体流速、初始浓度等。目前,吹脱法在高浓度氨氮废水处理中的应用较多。

4. 折点氯化法

折点氯化法除氨的机理为氯气与氨反应生成无害的氮气,N2逸人大气,使反应源不断向右进行。其反应式为:NH4﹢+1.5HOCl→0.5N2+1.5H20+2.5H﹢+1.5Cl﹣

当将氯气通人废水中达到某一点时,水中游离氯含量较低,而氨的浓度降为零;氯气通人量超过该点时,水中游离氯的量就会增加,因此,称该点为折点,该状态下的氯化称为折点氯化。

5. 催化氧化法

催化氧化法是通过催化剂作用,在一定温度、压力下,经空气氧化,可使污水中的有机物和氨分别氧化分解成CO2、N2和H2O等无害物质,达到净化的目的。
催化氧化法具有净化效率高、流程简单、占底面积少等有点,多用于处理高浓度氨氮废水。应用难点在于如何防止催化剂流失以及对设备的腐蚀防护。

6. 电化学氧化法
电化学氧化法是指利用具有催化活性的电极氧化去除水中污染物的方法。影响因素有电流密度、进水流量、出水放置时间和点解时间等。
研究含氨氮废水在循环流动式电解槽中的电化学氧化,其中阳极为Ti/Ru02-TiO2-Ir02-SnO2网状电极,阴极为网状钛电极。结果表明,在氯离子浓度为400mg/L,初始氨氮浓度为40mg/L,进水流量为600mL/min,电流密度为20mA/cm2,电解时间为90min时,氨氮去除率为99.37%。表明电解氧化含氨氮废水具有较好的应用前景。

7. 同步硝化反硝化(SND)
当硝化与反硝化在同一个反应器中同时进行时,称为同时消化反硝化(SND)。废水中的溶解氧受扩散速度限制在微生物絮体或者生物膜上的微环境区域产生溶解氧梯度,使微生物絮体或生物膜的外表面溶解氧梯度,利于好氧硝化菌和氨化菌的生长繁殖,越深入絮体或膜内部,溶解氧浓度越低,产生缺氧区,反硝化菌占优势,从而形成同时消化反硝化过程。影响同时消化反硝化的因素有PH值、温度、碱度、有机碳源、溶解氧及污泥龄等。


在线咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
版权所有©2024 常州天环净化设备有限公司 All Rights Reserved   
备案号:   sitemap.xml
技术支持:环保在线   管理登陆

扫码关注我们

Baidu
map