产品中心/ PRODUCTS

我的位置:首页  >  产品中心  >  一体化污水处理设备  >  一体化废水处理设备  >  宿迁一体化酸性废水处理设施安全实惠

宿迁一体化酸性废水处理设施安全实惠

  • 产品型号:
  • 更新时间:2024-03-27

简要描述:宿迁一体化酸性废水处理设施安全实惠废液脱砷方法中,化学沉淀法是多种处理方式的综合处理,但由于其需加入大量的化学药剂,产生的大量二次污染废渣较难处理。物化法只能低批量处理浓度较低且成分单一具有有较高回收价值的废水

产品详情

宿迁一体化酸性废水处理设施安全实惠

火电厂排放的氮氧化物(NOX)是大气污染物之一。蜂窝式催化剂作为选择性催化还原(SCR)烟气脱硝技术的核心,大部分火电厂多采用该项技术进行烟气脱硝处理以降低氮氧化物的排放量。砷中毒是造成催化剂失活的主要原因之一,由于燃煤锅炉中含微量的砷,在高温烟气中砷以气态As2O3形式存在,烟气中挥发性的气态砷分子相对于催化剂空隙而言较小,容易进入催化剂的孔隙造成催化剂砷中毒导致失活,从而降低了催化剂的使用寿命。因此,对催化剂进行脱砷处理使其再生利用具有重要意义,采用超声波场下碱浸脱砷的方法能很好的脱除催化剂中的砷化物,然而部分砷化物会进入到溶液当中,对环境有一定的危害,无法直接排放,因此要对含砷的废液进行进一步处理,达标后排放,环境友好。目前,含砷废水的处理方法有化学沉淀法、吸附法、离子交换法和液相萃取法以及新兴的具有发展前途的微生物法等。对于砷含量较高的酸性废水,采用化学沉淀法中的硫化法沉淀砷,可去除废水中约99.9%以上的砷,形成以As2S3为主要成分且含量较高的含砷废渣,有利于综合利用。对于酸度较低的废水,若用硫化法沉淀砷后废水中的砷含量不能达到排放标准,可进一步采用铁盐沉淀法,并经老化处理,生成的铁盐废渣可以长期堆存,对环境污染影响较小。

  废液脱砷方法中,化学沉淀法是多种处理方式的综合处理,但由于其需加入大量的化学药剂,产生的大量二次污染废渣较难处理。物化法只能低批量处理浓度较低且成分单一具有有较高回收价值的废水,工业化程度较低。微生物法具有经济高效且无害化的优点,被认为是有发展前途的方法,但在实际操作中适合的菌类较难寻找且在处理工程中影响因素较多。随着越来越多的催化剂生产企业关注催化剂再生问题,再生处理过程中产生的含砷废水若不加以处理,无疑会对环境又造成了二次污染。同时,考虑将脱砷处理后的废水循环利用于整个催化剂再生体系,实现循环再利用以降低生产成本。所以,本文对含砷废水中的砷化物脱除进行研究,旨在探索出一种切实可行的工艺方法,达到国家处理废水的排放标准0.5mg/L的要求。

  火力发电厂的排放烟气主要采用石灰石-石膏湿法进行脱硫处理,在脱硫过程中会产生一定量的废水。其废水水质成分复杂,污染物种类多,其中含有多种《污水综合排放标准》(GB8978-1996)中严格控制的第一类污染物,必须进行单独处理。某项目配套(5×330MW)电力设施工程的脱硫系统采用石灰石-石膏湿法脱硫工艺系统,脱硫效率要求不小于95%,采用一炉一塔,共五炉五塔,脱硫系统不设GGH、不设旁路烟道,设增风压机。五套脱硫装置公用一套石灰石制备采用湿磨系统,石膏脱水采用真空皮带脱水系统。设置一套公用脱硫废水处理系统,脱硫废水引自废水旋流器溢流水,废水处理量为15t/h,处理工艺流程为“三联箱处理+澄清浓缩+最终中和",处理水质要求达到《污水综合排放标准》(GB8978-1996)第二时段一级标准。针对该项目中废水处理系统在实际运行中存在的问题进行分析,并给出优化建议与措施。

  1、脱硫废水产生的原因

  1.1 FGD系统需要排放Cl-

  煤、石灰石和工艺水是氯离子的主要来源。一般煤中氯含量为0.1%~0.01%,普通石灰石中含氯量约为0.01%,工艺水中含氯量为20~200mg/L,脱硫系统石灰石浆液不断循环使用,导致氯离子在浆液中逐渐富集,但同离子效应导致石灰石耗量增加、脱硫效率下降,需要排放废水,降低滤液中Cl-的含量,提高脱硫效率。

  1.2 系统需要排放灰分

  脱硫系统的烟气会产生灰分,长时间不外排,灰尘含量会不断累积,导致石膏纯度下降,并使脱硫效率降低,因此必须排放一定量的废水,提高石膏纯度。

  1.3 系统需要排放惰性物质

  石膏的纯度和系统浆液的正常物化性能受惰性物质的影响,脱硫剂(石灰石)中的惰性物质随着浆液的循环使用也会在系统内积累,惰性物质积聚过多,会导致脱硫剂失效,通过排放一定量的废水,可提高石膏的纯度和系统浆液的正常物化性能。

  2、脱硫废水水质水量

  脱硫废水的水质水量受煤种、工艺补水、脱硫系统的运行控制参数等因数影响。脱硫废水的水量具有波动性大、不连续的特点。不同火力发电厂的水质情况会有所不同。一般情况下,脱硫废水具有高盐量、偏酸性、高浊度、高硬度及污染物种类多等特点,脱硫废水所含的污染物主要为悬浮物,含有氟化物、重金属、过饱和亚硫酸盐及硫酸盐等,其中废水中Cl含量在8000~18,800mg/L,脱硫废水腐蚀性强。

 由于环保的敏感性,很难咨询到国内其它铜冶炼生产企业相关信息。根据查阅资料显示,国内去除COD研究最多的方法是采用试剂氧化法,包括双氧水氧化、氧化、空气氧化等等,而且随着科技的发展,化学混凝法、电化学法、臭氧氧化法、生物吸附法、微电解法等治理COD的新方法、新技术陆续有成果报道。但究竟哪一种方法适合高钠盐、高氯盐废水,能实现效果好、成本低,还有待于进一步系统研究。

  目前对于氯离子的去除并无十分行之有效的办法,对于高盐氯根浓度的废水来说,如果水量很小,可以考虑使用膜法来去除,如离子交换、电渗析等,实验室内去除氯离子的方法还有使用银离子,产生的氯化银可以沉淀,但成本

  去除废水中COD的方法:

  絮凝法:投资小、操作简单。絮凝剂种类、投入量、原水的pH和COD值及原水水质等因素均会影响絮凝法去除COD的效果。有研究表明,用聚合氯化铝作为絮凝剂,pH=7的条件下,采用两段工艺,可以使脱硫后废水含COD量降至40mg/L以下。

  利用黄钾铁矾类矿物形成过程预含硫含高浓度COD废水:对某含高浓度COD工业废水进行预处理,除去一定量的SO4-,最佳工艺条件为pH值为2.50~3.20,氯化铁晶体FeCl3·6H2O)最佳投入量为50g/L。经过两次黄钾铁矾类矿物沉淀过程,该废水COD的去除率达到85.29%,结合H2O2的氧化处理,COD去除率可达96%。

 

宿迁一体化酸性废水处理设施安全实惠


 用硅藻土回收染料废水中的亚硫酸钠:研究结果表明,采用此法获得的晶体亚硫酸钠,其回收率和相对含量都优于筛网过滤法;应用Garman方程计算出过滤定量液体所使用的最佳硅藻土助滤剂用量及对应压力。

  添加氢氧化钙:含亚硫酸的废水投加氢氧化钙反应生成氢氧化钠和亚硫酸钙,通过沉淀分离将难溶的亚硫酸钙从水中清除,碱性废水与酸性废水中和。

  Fenton氧化-生物接触氧化工艺:陈思莉等采用Fenton氧化-生物接触氧化工艺处理含甲醛和的模拟废水(简称废水),在H2O2(体积分数30%)加入量2.5g/L、H2O2与Fe2+质量浓度比3.75、反应时间3h、不调节废水初始pH的Fenton氧化预处理最佳操作条件下,废水COD从1000mg/L左右降至300mg/L,COD去除率达72%。原废水无法直接进行生化处理,经Fenton氧化预处理后其BOD/COD约为0.5,易于生化处理。Fenton氧化-生物接触氧化工艺处理废水,生物接触氧化停留时间为12h时,废水COD去除率高达94%,处理后出水COD小于70mg/L,处理效果很好。

  超声波-Fenton试剂-曝气相结合处理:最佳工艺条件:100mLCOD为11500mg/L的废水(初始pH=5)在超声功率为200W下,辐射60min,H2O2用量1.3mL,FeSO4用量为0.069的条件下,COD去除率达到83%。

  尿素除COD:尿素对废水的COD去除,一次性去除率达到81%以上;生成白色沉淀,合成有用物质甲基脲,具有很好的经济效益和环境效益。

  用少量Fenton试剂对工业废水进行预处理:使废水中的难降解有机物发生部分氧化,改变它们的可生化性、溶解性和混凝性能,利于后续处理。由实验数据可知,废水经调酸至pH=2+曝气+Fenton反应对此废水COD有一定的去除效果,但效果不佳;分析可能是废水中氯离子浓度高,对检测造成干扰(原水氯离子浓度高达30000mg/L)。


在线咨询

留言框

  • 产品:

  • 您的单位:

  • 您的姓名:

  • 联系电话:

  • 常用邮箱:

  • 省份:

  • 详细地址:

  • 补充说明:

  • 验证码:

    请输入计算结果(填写阿拉伯数字),如:三加四=7
版权所有©2024 常州天环净化设备有限公司 All Rights Reserved   
备案号:   sitemap.xml
技术支持:环保在线   管理登陆

扫码关注我们

Baidu
map